Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 331: 117320, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696759

RESUMO

Polybrominated diphenyl ethers (PBDEs) are a class of persistent organic pollutants being widely distributed and harmful to human health and wildlife, and the development of sustainable rehabilitation strategies including microbial degradation is of great concern. Although the increasing number of bacteria, especially the broad-spectrum and potent aerobes have been isolated for the efficient removal of PBDEs, the external influences and the corresponding influential mechanism on biodegradation are not fully understood yet. Given the wide-spectrum biodegradability of aerobic bacterial isolate, B. xenovorans LB400 for PBDEs, the dual impacts of many pivotal factors including pH, temperature, presence of dissolved organic matter (DOM) and cadmium ion etc. were comprehensively revealed on biodegradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). Due to the structural resemblance and stimulation of specific enzyme activity in bacteria, the biphenyl as substrates showed the greater capacity than non-aromatic compounds in improving biodegradation. The individual adaptation to neutrality and cultivation at about 30 °C was beneficial for biodegradation since the bacterial cellular viability and enzyme activity was mostly preserved. Although it was possibly good for the induction of hormesis and favorable to enhance the permeability or bioavailability of pollutant, the exceeding increase of Cd2+ or DOM may not give the profitable increase of biodegradation yet for the detrimental effect. For biodegradation, the mechanistic relationship that took account of the integrative correlation with the influential factors was artfully developed using partial least square (PLS) regression technique. Relative to the most significant influence of culture time and initial concentration of BDE-47, the larger relevance of other factors primarily marked as pH and DOM was consecutively shown after the quantitative prioritization. This may not only help understand the influential mechanism but provide a prioritizing regulation strategy for biodegradation of BDE-47. The PLS-derived relationship was validated with the certain predictability in biodegradation, and could be used as an alternative to accelerate a priori evaluation of suitability or improve the feasibility of such bacteria in remediation of PBDEs in the environment.


Assuntos
Poluentes Ambientais , Éteres Difenil Halogenados , Animais , Humanos , Éteres Difenil Halogenados/química , Éteres Difenil Halogenados/metabolismo , Biodegradação Ambiental , Animais Selvagens/metabolismo
2.
J Hazard Mater ; 416: 126132, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492924

RESUMO

Polybrominated diphenyl ethers (PBDEs) are a group of persistent pollutants in the environment. Though aerobic biodegradation of PBDEs have been extensively studied, the involved hydroxylation mechanism decisive for whole biotransformation is not clear yet. During the effective biodegradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) by B. xenovorans LB400, the depletion of endogenous ∙OH by scavenger could bring about the significant decrease of biodegradation efficiency whereas ·O2- was nearly not influential. Given the importance of ∙OH in hydroxylation, the reaction mechanisms along major pathways of electrophilic addition and hydrogen abstraction were theoretically examined by density functional theory (DFT). For the less demand of activation energy, the relative preference of electrophilic addition was shown at aromatic C3-site. When the secondary reaction was considered after addition at C4-site, the barrierless association of ∙OH at C3-site and deprotonation by H2O was validated as the energetically-favorable pathway that may cause dihydroxylation of BDE-47 into 3,4-dihydroxyl-BDE-17. The electrophilic addition followed by seconary barrierless trans-association of ∙OH and then dehydration seemed favorable for monohydroxylation as regards energetic barrier merely up to 194.01 kJ mol-1, while the hydrogen abstraction by ∙OH from C5-site was more privileged actually. The theoretical insights would help well understand the hydroxylation mechanism of PBDEs by aerobes.


Assuntos
Bactérias Aeróbias , Éter , Éteres Difenil Halogenados , Hidroxilação
3.
J Hazard Mater ; 393: 122382, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32114132

RESUMO

Microbiological degradation is often considered as an important strategy to reduce the risks of polybrominated diphenyl ethers (PBDEs), which are environmentally widespread and harmful to human health and wildlife. With the well-identified aerobic bacteria, i.e. B. xenovorans LB400, the biodegradation of 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) occurred efficiently in conformity to the first-order kinetics and showed the strong dependence on initial concentration of pollutant and bioavailability regulation by biosurfactant. The mild increase of initial concentration of BDE-47 would enhance biodegradation whereas the excessive increase failed due to the oxidative stress or cytotoxicity to bacteria. Rather than the bacterial extracellular adsorption that was bioactively-mediated in thermodynamics, the intracellular accumulations at different time gradients showed the negative correlation with biodegradation efficiency of BDE-47. The spontaneous biodegradation of pollutant should be sourced from the gradual reduction of intracellular accumulation. Though the improved bioavailability of BDE-47 by sucrose fatty acid ester (SFAE) hardly altered the extracellular adsorption, the bacterial intracellular accumulation was indicated to increase continuously with used amount of biosurfactant and then decrease for the cellular morphological damage, and interestingly it appeared to be temporary reservoir for prompt delivery to biodegradation in light of the opposite variation tendency with time.


Assuntos
Burkholderiaceae/química , Burkholderiaceae/metabolismo , Éteres Difenil Halogenados/química , Éteres Difenil Halogenados/metabolismo , Adsorção , Biodegradação Ambiental , Disponibilidade Biológica , Ésteres/química , Tensoativos/química
4.
Environ Res ; 179(Pt B): 108838, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31678730

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs) which are structurally featured with one or more aromatic skeletons are often regarded as two important groups of organic pollutants due to the widespread distribution and notorious toxic effects in soils. Relative to the great number of structural analogues or congeners detected in soil, however, the soil adsorption and bioaccumulation of PAHs/PAEs by plant is far less studied for the insufficiency of experimental determinations or lack of insights into the inherent structural requirements. To mechanistically evaluate the congener-specific soil adsorption and bioaccumulation for PAHs/PAEs, the quantitative structure-activity relationships (QSARs) were successfully developed by density functional theory (DFT) computation and partial least squares (PLS) analysis. As verified with the higher cumulative variance coefficients and cross-validated correlation coefficients for strong stability, interpretability and predictability, the QSARs could be used for prediction of unknown adsorption potency or bioavailability within the specified applicability domain, respectively. It was indicated by QSAR that the structural requirements of PAHs/PAEs necessary for strengthening the soil adsorption were mainly attributed to the molecular polarizability and the associated dispersion interaction with soil. As regards the bioaccumulation by carrot, the aggravation of spherical polarity change of molecules and the involved electrostatic interaction with soil entity or electron transfer from the highest occupied molecular orbital (HOMO) of PAHs/PAEs was implied to be inherently decisive for the variance of bioavailability among congeners. Based on the holistic view of negative correlation relationship, the soil adsorption seemed to act as the forceful constraint in decreasing the bioaccumulation of PAHs/PAEs and could also be alternatively gauged as the preliminary evaluation of bioavailability and risks on soil ecosystem. It would thus help better understand the soil adsorption and bioaccumulation with the informative mechanistic insights and provide data support for ecological risk assessment of PAHs/PAEs in soils.


Assuntos
Ácidos Ftálicos/química , Hidrocarbonetos Policíclicos Aromáticos/química , Relação Quantitativa Estrutura-Atividade , Poluentes do Solo/química , Adsorção , Bioacumulação , Ecossistema , Ácidos Ftálicos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Poluentes do Solo/análise
5.
Chemosphere ; 210: 941-948, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30208554

RESUMO

Though bioaccessibility commonly recognized as a guideline for risk assessment is closely related with pollution occurrence and chemical species of compounds, the mechanistic links are barely evaluated particularly for widespread polychlorinated biphenyls (PCBs) in soil. With the biomimetic extraction of hydroxypropyl-ß-cyclodextrin (ß-HPCD), the temporal and spatial influences of soil properties, aging and structural characteristics, e.g. polarity of PCB congeners on bioaccessibility were investigated for PCBs. Sensitive variation of bioaccessibility with aging, soil organic matter (SOM), particle size and soil moisture were clearly evidenced for different PCB congeners. Due to aging, the bioaccessibility decreased in the long term after stabilization for 36 h. In concert with the first-order kinetics, the decay rates of bioaccessibility were shown with congener-specificity and were well correlated with dipoles of PCBs. The increment of SOM diminished the bioaccessibility for the strengthened adsorption while the increased particle size and soil moisture elevated it possibly due to the less adsorption on soil particles and more accommodation of PCBs in soil pore water. Except the positive correlations with particle size, soil moisture and dipole moment, the greater dependency on aging and SOM was highlighted for bioaccessibility by partial least squares (PLS) analysis. The mutual relationship with influential factors was quantitatively formulated for accelerative prediction of bioaccessibility, and the comparative evaluation and detailed insights into the mechanistic links would thus help enhance the precise determination of bioaccessibility and risk assessment of PCBs in soil.


Assuntos
Poluição Ambiental/análise , Bifenilos Policlorados/química , Poluentes do Solo/química , Solo/química , Bifenilos Policlorados/análise , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...